Member Resources for students of Aikido Multnomah Aikikai in Portland Oregon.
Dojo News blog articles now hosted on http://www.multnomahaikikai.com/dojo-news
In this video from 1988 Chiba sensei offers instruction on suwari waza shomenuchi ikkyo.
Here is Chiba Sensei again in 2011 demonstrating suwari waza shomenuchi ikkyo. As he slows down to show the initial contact, note that both hands make contact together at uke's elbow:
link to view on Youtube:: https://youtu.be/tgOYPIPOn30
Phillip Vargas Sensei demonstrates suwari waza shomenuchi ikkyo and clearly shows the placement of hands together at uke's elbow. Note how his entrance is compact, elbows down and close to his body. Which knee moves in as he performs the cut down?
link to view on YouTube: https://youtu.be/YazjeLAOKgw
How is a World Cup soccer player like an Aikidoist?
results
indicate skill learning leads to the development of specialized
neuronal circuits, which allow the execution of fast and accurate
sequential movements without average increases in brain activity. - See
more at: http://elifesciences.org/content/2/e00801#sthash.FKxErGU0.dpuf
results
indicate skill learning leads to the development of specialized
neuronal circuits, which allow the execution of fast and accurate
sequential movements without average increases in brain activity. - See
more at: http://elifesciences.org/content/2/e00801#sthash.FKxErGU0.dpuf
When you've practiced a movement mindfully over a long time, you don't have to think so hard to accomplish the motion and your brain is free to think about other things. For example, if you don't have to concentrate hard on where you are going to step, then you can start to pay attention to your breath or the weight in your partner's back foot. You can improve your efficiency, performance, expression of power - all with less effort.
or, as Tom Stafford writes about World Cup footballers:
"Bergkamp doesn't have to think about his foot when he wants to control a
ball, so he's free to think about the wind, or the defender, or when
exactly he wants to control the ball."
Getty Images
Enjoy this article excerpt on the brain processes involved in performing dazzling feats on the soccer field and how you can apply them to everyday activities like driving a car.... or maybe even performing your ikkyo!
results
indicate skill learning leads to the development of specialized
neuronal circuits, which allow the execution of fast and accurate
sequential movements without average increases in brain activity. - See
more at: http://elifesciences.org/content/2/e00801#sthash.FKxErGU0.dpuf
results
indicate skill learning leads to the development of specialized
neuronal circuits, which allow the execution of fast and accurate
sequential movements without average increases in brain activity. - See
more at: http://elifesciences.org/content/2/e00801#sthash.FKxErGU0.dpuf
-Suzane Van Amburgh
article excerpt by Tom Stafford from BBC Future:
The 2014 World Cup in Brazil has already given us a clutch of classic
moments, like Robin Van
Persie’s perfect header to open the Dutch onslaught against the Spanish.
We can't help but be dazzled by the skills on
display, and at times it seems as if the footballers have access to
talents that are not just beyond description, but beyond conscious
comprehension. Yet magical moments from World Cup players have a lot more in common with everyday intelligence than you
might think.
Are you exhibiting the same kind of skills Robin Van Persie shows on the pitch when you're driving your car? (AFP/Getty Images)
We often talk about astonishing athletic feats as if
they are something completely different from everyday thought. When we
say a footballer like Lionel Messi acts on instinct, out of habit or due to his
training, we distance what they do from that we hear echoing within our
own heads.
The idea of "muscle memory" encourages this – allowing us to
cordon off feats of motor skill as a special kind of psychological
phenomenon, something stored, like magic potion, in our muscles. But the
truth, of course, is that so called muscle memories are stored in our
brains, just like every other kind of memory. What is more, these
examples of great skill are not so different from ordinary thought.
If
you speak to world-class athletes, such as World Cup footballers, about
what they do, they reveal that a lot of conscious reasoning goes into
those moments of sublime skill. Here's England's Wayne Rooney, in 2012,
describing what it feels like as a cross comes into the penalty box:
"You're asking yourself six questions in a split second. Maybe you've
got time to bring it down on the chest and shoot, or you have to head it
first-time. If the defender is there, you've obviously got to try and
hit it first-time. If he's farther back, you've got space to take a
touch. You get the decision made. Then it's obviously about the
execution."
All this in half a second! Rooney is obviously thinking more, not less, during these most crucial moments.
(Getty Images)
This
is not an isolated example. Dennis Bergkamp delighted Dutch fans by
scoring a beautiful winning goal from a long pass in the 1998 World Cup
quarter final against Argentina In a subsequent interview
Bergkamp describes in minute detail all the factors leading up to the
goal, from the moment he made eye contact with the defender who was
about to pass the ball, to his calculations about how to control the
ball. He even lets slip that part of his brain is keeping track of the
wind conditions. Just as with Rooney, this isn't just a moment of
unconscious instinct, but of instinct combined with a whirlwind of
conscious reasoning. And it all comes together.
Studies of the way the brain embeds new skills, until the
movements become automatic, may help make sense of this picture. We know
that athletes like those performing in the World Cup train with many
years of deliberate, mindful, practice.
As they go through their drills, dedicated brain networks develop, allowing the movements to be deployed with less effort and more control. As well as the brain networks involved becoming more refined, the areas of the brain most active in controlling a movement change with increased skill
– as we practice, areas deeper within the brain reorganise to take on
more of the work, leaving the cortex, including areas associated with
planning and reasoning, free to take on new tasks.
But this
doesn't mean we think less when we're highly skilled. On the contrary,
this process called automatisation means that we think differently.
Bergkamp doesn't have to think about his foot when he wants to control a
ball, so he's free to think about the wind, or the defender, or when
exactly he wants to control the ball.
For highly practiced movements we
have to think less about controlling every action but what we do is
still ultimately in the service of our overall targets (like scoring a
goal in the case of football). In line with this, and contrary to the
idea of skills as robotic-reflexes, experiments show that more
flexibility develops alongside increased automaticity.
Intelligence involves using conscious deliberation at the
right level to optimally control your actions. Driving a car is easier
because you don't have to think about the physics of the combustion
engine, and it's also easier because you no longer have to think about
the movements required to change gear or turn on the indicators. But
just because driving a car relies on automatic skills like these,
doesn't mean that you're mindless when driving a car. The better
drivers, just like the better footballers, are making more choices each
time they show off their talents, not fewer.
So footballer's
immense skills aren't that different from many everyday things we do
like walking, talking or driving a car. We've practiced these things so
much we don't have to think about how we're doing them. We may even not
pay much attention to what we're doing, or have much of a memory for
them (ever reached the end of a journey and realised you don't recall a
single thing about the trip?), but that doesn't mean that we aren't or
couldn't. In fact, because we have practiced these skills we can deploy
them at the same time as other things (walking and chewing gum, talking
while tying our shoe laces, etc). This doesn't diminish their mystery,
but it does align it with the central mystery of psychology - how we
learn to do anything.
Read the whole story on BBC Future:
http://www.bbc.com/future/story/20140619-whats-in-a-footballers-head
ELife research study on skills acquisition and neural activity:
http://elifesciences.org/content/2/e00801
Study revealing positive transfer effects: The authors also measured potential positive transfer effects of
learning from one motor task to another. Four experienced cascade
jugglers and 5 novices learned to bounce juggle, practicing regularly
for 5 weeks. The experienced jugglers showed positive transfer of
learning, maintaining a lead of approximately 6-10 days over the
novices, even as both groups automatized the new skill.
http://www.ncbi.nlm.nih.gov/pubmed/16280317